ua nt - p h / 99 03 04 2 v 1 1 1 M ar 1 99 9 An Almost - Quadratic Lower Bound for Quantum Formula Size ∗

نویسندگان

  • Vwani P. Roychowdhury
  • Farrokh Vatan
چکیده

We show that Nechiporuk’s method [14] for proving lower bound for Boolean formulas can be extended to the quantum case. This leads to an Ω(n2/ log n) lower bound for quantum formulas computing an explicit function. The only known previous explicit lower bound for quantum formulas [15] states that the majority function does not have a linear–size quantum formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 99 03 01 5 v 2 2 0 M ar 1 99 9 Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement. 1 email: [email protected]

متن کامل

ar X iv : q ua nt - p h / 99 03 01 5 v 1 4 M ar 1 99 9 Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement.

متن کامل

ar X iv : q ua nt - p h / 99 03 01 5 v 3 2 9 A pr 1 99 9 Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement. 1 email: [email protected]

متن کامل

ar X iv : q ua nt - p h / 96 05 04 2 v 1 2 9 M ay 1 99 6 A generalized Pancharatnam geometric phase formula for three level quantum systems

We describe a recently developed generalisation of the Poincar ′ e sphere method, to represent pure states of a three-level quantum system in a convenient geometrical manner. The construction depends on the properties of the group SU(3) and its generators in the defining representation, and uses geometrical objects and operations in an eight dimensional real Euclidean space. This construction i...

متن کامل

ua nt - p h / 98 03 08 2 v 1 2 9 M ar 1 99 8 Geometry of the Hilbert space and the Quantum Zeno Effect

We show that the quadratic short time behaviour of transition probability is a natural consequence of the inner product of the Hilbert space of the quantum system. We provide a relation between the survival probability and the underlying geometric structure such as the Fubini-Study metric defined on the projective Hilbert space of the quantum system. This predicts the quantum Zeno effect even f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007